Like HowStuffWorks on Facebook!

How DC/AC Power Inverters Work


Why Do I Need To Convert from DC to AC?
Why Do I Need To Convert from DC to AC?

Most cars and motor homes derive their power from a 12-volt battery. In some cases, a heavy-duty 24-volt battery might be used. It's important to know your vehicle's voltage because the voltage rating of the inverter you select should match the voltage of the battery. In either case, the battery provides direct current. This means that the current flows continuously from the negative terminal of the battery, through the completed circuit and back to the positive terminal of the battery. The flow is in one direction only, hence the name direct current. The ability to provide direct current power is inherent to the nature of batteries.

Direct current is very useful, but batteries can generally only provide relatively low-voltage DC power. Many devices need more power to function properly than DC can provide. They're designed to run on the 120-volt AC power supplied to homes in the U.S. Alternating current or AC, constantly changes polarity, sending current one way through the circuit, then reversing and sending it the other way. It does this very quickly -- 60 times per second in most U.S. electrical systems. AC power works well at high voltages, and can be "stepped up" in voltage by a transformer more easily than direct current can.

An inverter increases the DC voltage, and then changes it to alternating current before sending it out to power a device. These devices were initially designed to do the opposite -- to convert alternating current into direct current. Since these converters could basically be run in reverse to accomplish the opposite effect, they were called inverters.

Up next, how do inverters invert?