In a sealed speaker setup, the driver diaphragm compresses air in the enclosure when it moves in and rarefies air when it moves out.

Sealed Speaker Enclosures

In most loudspeaker systems, the drivers and the crossover are housed in some sort of speaker enclosure. These enclosures serve a number of functions. On their most basic level, they make it much easier to set up the speakers. Everything's in one unit and the drivers are kept in the right position, so they work together to produce the best sound. Enclosures are usually built with heavy wood or another solid material that will effectively absorb the driver's vibration. If you simply placed a driver on a table, the table would vibrate so much it would drown out a lot of the speaker's sound.

Additionally, the speaker enclosure affects how sound is produced. When we looked at speaker drivers, we focused on how the vibrating diaphragm emitted sound waves in front of the cone. But, since the diaphragm is moving back and forth, it's actually producing sound waves behind the cone as well. Different enclosure types have different ways of handling these "backward" waves.

The most common type of enclosure is the sealed enclosure, also called acoustic suspension enclosure. These enclosures are completely sealed, so no air can escape. This means the forward wave travels outward into the room, while the backward wave travels only into the box. Of course, since no air can escape, the internal air pressure is constantly changing -- when the driver moves in, the pressure is increased and when the driver moves out, it is decreased. Both movements create pressure differences between the air inside the box and the air outside the box. The air will always move to equalize pressure levels, so the driver is constantly being pushed toward its "resting" state -- the position at which internal and external air pressure are the same.

These enclosures are less efficient than other designs because the amplifier has to boost the electrical signal to overcome the force of air pressure. The force serves a valuable function, however -- it acts like a spring to keep the driver in the right position. This makes for tighter, more precise sound production.