How Night Vision Works

        Tech | High-Tech Gadgets

Infrared Light
Infrared light is a small part of the light spectrum.
Infrared light is a small part of the light spectrum.

In order to understand night vision, it is important to understand something about light. The amount of energy in a light wave is related to its wavelength: Shorter wavelengths have higher energy. Of visible light, violet has the most energy, and red has the least. Just next to the visible light spectrum is the infrared spectrum.


Infrared light can be split into three categories:

  • Near-infrared (near-IR) - Closest to visible light, near-IR has wavelengths that range from 0.7 to 1.3 microns, or 700 billionths to 1,300 billionths of a meter.
  • Mid-infrared (mid-IR) - Mid-IR has wavelengths ranging from 1.3 to 3 microns. Both near-IR and mid-IR are used by a variety of electronic devices, including remote controls.
  • Thermal-infrared (thermal-IR) - Occupying the largest part of the infrared spectrum, thermal-IR has wavelengths ranging from 3 microns to over 30 microns.

The key difference between thermal-IR and the other two is that thermal-IR is emitted by an object instead of reflected off it. Infrared light is emitted by an object because of what is happening at the atomic level.


Atoms are constantly in motion. They continuously vibrate, move and rotate. Even the atoms that make up the chairs that we sit in are moving around. Solids are actually in motion! Atoms can be in different states of excitation. In other words, they can have different energies. If we apply a lot of energy to an atom, it can leave what is called the ground-state energy level and move to an excited level. The level of excitation depends on the amount of energy applied to the atom via heat, light or electricity.

An atom consists of a nucleus (containing the protons and neutrons) and an electron cloud. Think of the electrons in this cloud as circling the nucleus in many different orbits. Although more modern views of the atom do not depict discrete orbits for the electrons, it can be useful to think of these orbits as the different energy levels of the atom. In other words, if we apply some heat to an atom, we might expect that some of the electrons in the lower energy orbitals would transition to higher energy orbitals, moving farther from the nucleus.

An atom has a nucleus and an electron cloud.
An atom has a nucleus and an electron cloud.

Once an electron moves to a higher-energy orbit, it eventually wants to return to the ground state. When it does, it releases its energy as a photon -- a particle of light. You see atoms releasing energy as photons all the time. For example, when the heating element in a toaster turns bright red, the red color is caused by atoms excited by heat, releasing red photons. An excited electron has more energy than a relaxed electron, and just as the electron absorbed some amount of energy to reach this excited level, it can release this energy to return to the ground state. This emitted energy is in the form of photons (light energy). The photon emitted has a very specific wavelength (color) that depends on the state of the electron's energy when the photon is released.

Anything that is alive uses energy, and so do many inanimate items such as engines and rockets. Energy consumption generates heat. In turn, heat causes the atoms in an object to fire off photons in the thermal-infrared spectrum. The hotter the object, the shorter the wavelength of the infrared photon it releases. An object that is very hot will even begin to emit photons in the visible spectrum, glowing red and then moving up through orange, yellow, blue and eventually white. Be sure to read How Light Bulbs Work, How Lasers Work and How Light Works for more detailed information on light and photon emission.

In night vision, thermal imaging takes advantage of this infrared emission. In the next section, we'll see just how it does this.