How OLEDs Work

Types of OLEDs: Passive and Active Matrix
OLED types include passive-matrix OLEDs, active-matrix OLEDs and transparent OLEDs.
OLED types include passive-matrix OLEDs, active-matrix OLEDs and transparent OLEDs.

There are several types of OLEDs:

  • Passive-matrix OLED
  • Active-matrix OLED
  • Transparent OLED
  • Top-emitting OLED
  • Foldable OLED
  • White OLED

Each type has different uses. In the following sections, we'll discuss each type of OLED. Let's start with passive-matrix and active-matrix OLEDs.

Passive-matrix OLED (PMOLED)

PMOLEDs have strips of cathode, organic layers and strips of anode. The anode strips are arranged perpendicular to the cathode strips. The intersections of the cathode and anode make up the pixels where light is emitted. External circuitry applies current to selected strips of anode and cathode, determining which pixels get turned on and which pixels remain off. Again, the brightness of each pixel is proportional to the amount of applied current.

PMOLEDs are easy to make, but they consume more power than other types of OLED, mainly due to the power needed for the external circuitry. PMOLEDs are most efficient for text and icons and are best suited for small screens (2- to 3-inch diagonal) such as those you find in cell phones, PDAs and MP3 players. Even with the external circuitry, passive-matrix OLEDs consume less battery power than the LCDs that currently power these devices.


Active-matrix OLED (AMOLED)

AMOLEDs have full layers of cathode, organic molecules and anode, but the anode layer overlays a thin film transistor (TFT) array that forms a matrix. The TFT array itself is the circuitry that determines which pixels get turned on to form an image.

AMOLEDs consume less power than PMOLEDs because the TFT array requires less power than external circuitry, so they are efficient for large displays. AMOLEDs also have faster refresh rates suitable for video. The best uses for AMOLEDs are computer monitors, large-screen TVs and electronic signs or billboards.