Talking Tags

When the RFID industry is able to lower the price of tags, it will lead to a ubiquitous network of smart packages that track every phase of the supply chain. Store ­shelves will be full of smart-labeled products that can be tracked from purchase to trash can. The shelves themselves will communicate wirelessly with the network. The tags will be just one component of this large product-tracking network.

The other two pieces to this network will be the readers that communicate with the tags and the Internet, which will provide communications lines for the network.

Let's look at a real-world scenario of this system:

  • At the grocery store, you buy a carton of milk. The milk containers will have an RFID tag that stores the milk's expiration date and price. When you lift the milk from the shelf, the shelf may display the milk's specific expiration date, or the information could be wirelessly sent to your personal digital assistant or cell phone.
  • As you exit the store, you pass through doors with an embedded tag reader. This reader tabulates the cost of all the items in your shopping cart and sends the grocery bill to your bank, which deducts the amount from your account. Product manufacturers know that you've bought their product, and the store's computers know exactly how many of each product need to be reordered.
  • Once you get home, you put your milk in the refrigerator, which is also equipped with a tag reader. This smart refrigerator is capable of tracking all of the groceries stored in it. It can track the foods you use and how often you restock your refrigerator, and can let you know when that milk and other foods spoil.
  • Products are also tracked when they are thrown into a trash can or recycle bin. At this point, your refrigerator could add milk to your grocery list, or you could program the fridge to order these items automatically.
  • Based on the products you buy, your grocery store gets to know your unique preferences. Instead of receiving generic newsletters with weekly grocery specials, you might receive one created just for you. If you have two school-age children and a puppy, your grocery store can use customer-specific marketing by sending you coupons for items like juice boxes and dog food.

In order for this system to work, each product will be given a unique product number. MIT's Auto-ID Center is working on an Electronic Product Code (EPC) identifier that could replace the UPC. Every smart label could contain 96 bits of information, including the product manufacturer, product name and a 40-bit serial number. Using this system, a smart label would communicate with a network called the Object Naming Service. This database would retrieve information about a product and then direct information to the manufacturer's computers.

The information stored on the smart labels would be written in a Product Markup Language (PML), which is based on the eXtensible Markup Language (XML). PML would allow all computers to communicate with any computer system similar to the way that Web servers read Hyper Text Markup Language (HTML), the common language used to create Web pages.

We're not at this point yet, but RFID tags are more prominent in your life than you may realize. Wal-Mart and Best Buy are just two major merchandisers that use RFID tags for stocking and marketing purposes. Automated systems called intelligent software agents manage all the data coming in and going out from RFID tags and will carry out a specific course of action like sorting items [source: RFID Journal].

The United States retail market is on the cusp of embracing a major implementation of RFID technology through payment systems that use Near Field Communication. These are the credit cards of the future.