How Cyclonic Separation Works

Many modern vacuums suck even more thanks to the process of cyclonic separation.
Many modern vacuums suck even more thanks to the process of cyclonic separation.

The box sat on the rug in my library, amid the hardcovers, paperbacks and copies of The New York Times. The package was tall, much taller than I expected. Yet there it was, greeting me after a long day at work. The house was quiet. A cat trotted into the room and rubbed her furry cheeks against the crate. The dogs followed and sniffed wet sniffs.

With scissors carefully in hand, I clipped the packing tape. One snip. Two snips. Three, and then four. The tape fell to the carpet in a sticky tangle, much to the cat's delight. Plastic and cardboard sleeves shrouded the contents, which I gingerly lifted from the box. I ripped the plastic off and threw the sleeves helter-skelter. Oh my, wasn't it beautiful! My new Dyson vacuum cleaner was beautiful! I quickly assembled the machine, my hands shaking like a fumbling lover. The hose goes here, the nozzle there. I plugged it in. I fired it up.

The Dyson roared to life. I was smitten. I have had affairs with other vacuums cleaners before. Eventually, they lost their ability to satisfy. Off they went, in a cloud of dust to the garage, to the town dump, to the attic. I hoped the Dyson would be different. I was sure it would be. I had done my homework. Cyclonic separation! That was the ticket. None of the other vacuums I ever owned had such technology.

Cyclonic separation! It sounded like something out of an Isaac Asimov sci-fi novel. But this was science fact. Would the Dyson disappoint? Was cyclonic separation just a marketing gimmick? Would it work? And what in the name of Electrolux is cyclonic separation anyway?